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A mathematical model describing the motion of a highly concentrated coke-ash mixture in the pneumatic 

transport region within the free board zone of a circulating fluidized bed reactor was developed earlier in 

[1 -3] .  In the present work it is extended to the case of a nonisothermal flow with heterogeneous combustion 

of carbon. Equations of mass, momentum, and energy conservation are obtained for the gas components 

and the coke fractions. Distinctive features of the heat transfer, combustion, and particle motion are 

investigated numerically. 

In the previous parts of the present work [1 -3  ] a system of equations was obtained for axisymmetric motion 

of gas and polydisperse coke and ash particles in the pneumatic transport region within the free board zone (FBZ) 
of a circulating fluidized bed reactor, and some numerical results were presented. The system includes equations 

of transfer of mass, momentum, and kinetic energy of fluctuation motion of gas and panicles (see [1 ], Eqs. (1)-(5), 

(7), and (11)). In what follows, these results will be extended to the case of a nonisothermal flow with combustion 

of the panicles. 
As was done in [4 ], it will be assumed that volatiles have enough time to evolve from the coal particles in 

the fluidized bed section, and in the FBZ heterogeneous reactions of carbon with reactant gases occur on the outer 

surface of impermeable spherical particles. In this case the reaction rates observed are determined from the model 

of a "compressible" nonreacting core. When anthracite burns in air, it is sufficient to consider the interaction of 

coke particles with oxygen and carbon dioxide in the stoichiometric scheme of the reactions: 

C + 02  = CO 2 + Q1 ; C + 0 .502  = CO + Q2 ; C + CO 2 = 2CO - Q3- (1) 

In accordance with Eq. (1), the gas will be assumed to consist of four components, i.e., 

4 
Pg= E CmMm'  (2) 

m=l 

where the subscripts m = 1 - 4  refer to 02,  CO2, CO, and N2. 
All hypotheses and simplifying assumptions enumerated in [1 ] (in particular, the boundary layer 

approximation) will be used here. As before, the pressure of the gas will be assumed constant in a cross section of 

the flow, but unlike [1 ], the density of the gas will change in accordance with changes in the temperature. Just as 

in [1 ], the equations of evolution of the state of the system can be obtained by applying Reynolds's procedure to 

the actual equations of mass, momentum, and energy conservation for the phases (the derivation is similar to that 

of [5 ] and to save space it is omitted here). 
The continuity equations of the m-th component of the gas have the form 
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where Y. means the sum over the fractions of the coke particles (as in [1 ], the subscripts j and l refer to coke and 
ash particles, respectively, and Z denotes the sum over all coke and ash fractions). Averaged concentrations of gas 

i - -  
components on the particle surface C~y are determined from the balance relations for oxygen, carbon dioxide, and 
carbon monoxide flows: 

- % ( c b  - c l  ) = ( r~y + r27 c b ;  

~aj ( c ~  - ca) = 2 ( r2y c1~ + ray c h ) .  

Summation of Eqs. (3), multiplied by M m, over m gives the continuity equation for the gas 

O - 1 O , /~t 
0--~ ('~gug) + - [r (fi~g + pg v'g ) ] = 6 ~, (p~ aj s - fig~j ) ~ , (4) r ~  j 

where 

(p~ is calculated similarly to Eq. (2)). 

"~j= ~m "CrnMrn~mj/(~m -CmMm) 

For the reacting coke particles two continuity equations are written (it is taken into consideration that the 

calculated concentration does not change due to combustion): 

0 1 O - , - -  
O--z ( fll "uJ ) + -r -~r [r ( ~j-vJ + flJ vY ) ] = - 6 [a2j ( C~ - -C2) + a3Y (-C~ - -C3) ] Mc flY/ (6Y PY ) ' (5) 

0 
O-z ( -nJ'uY ) + -r [r ( -ffJ ~Y + nj vi ) ] = O (6) 

(Me is the molecular weight of carbon). At each point of the flow the size of the coke particles is easily found from 

the known fij and ~/(6]  -- (6 /3J~y)~) .  Equations (4) and (5) differ from similar equations (1) and (2) in [1 ], 

obtained for a nonreacting flow, in the right-hand side, which, like that in Eq. (3), includes the effect of 
heterogeneous reactions (1). It should be noted that in the right-hand side of (3)-(5) and in the subsequent 

equations, corrrelations containing fluctuations of the concentrations of the components and the diffusion mass 
transfer are omitted since their contributions must be comparatively small for rather large particles (see [5 ]) and 
the calculation is very difficult. Naturally, for the ash particles the continuity equation preserves the form of Eq. 
(2) of [1 ]. 

Let the substance transferred from the j-th coke fraction to the gas phase as a result of reactions (I) leave 
behind its fraction with the parameters of the particles ~y, ~/, ki, hi). Then, the equations of axial (4) and radial 

(5) motion of the particles presented in [I ] and Eq. (11) concerning the kinetic energy of random motion of the 
particles presented in [ 1 ] remain in force in the case considered. The equation of axial motion of the gas has the 
f o r m  

pgUg Oz + (pgvg +Pgvg) Or = r Or r [ ~ g  Or -PgU'gVg - 
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O~ ~] F/z + 6  X (P~da]S-pg'~l)fl.icS; 1 ( u ] - u g )  (7) 
O z  i J 

where the last term (additional, compared to Eq. (3) of [1 ]) includes the transition of the burnt carbon to the gas 
phase (i.e., the increase i n the velocity of the carbon from that of the particles to that of the gas). A similar correction 

is also introduced into the equation of transfer of kinetic energy of turbulent gas fluctuations (7) of [1 ]: 

_ _  , Okg 
pgugOkg+(Pg~gOz +pgV'g) Or - lr Or •  

x { /Xg OkSOr -2Pgl- V'g(U:+v:+w:)l }-pgU'gV'gO'Ug/Or- 

- P g ( ~ + % ) + r v - 6  E (P:ua[-Tg~:)3:~; ~ x 
/ 

(8) 

(the last term in the right-hand side describes the expenditures of the fluctuation energy of the gas associated with 

the new compound). 
Finally, the energy conservation equation will be given. For the particles of the i-th fraction 

OciTi ' ' Oc~il 
pi /~i~-Wz + (~i~e+F~v~)-W:j = 

Pir OrO (rci~ivl Ti) + 6~icSSz 1 { qconvi + qradi + 

n . i 
m u m 

+ col [(KliQli + K2i O2i) C~i K3iQ3iC~i l } (9) 

(here i = ], l; co/= 1, col = 0). In the right-hand side of Eq. (9) terms appear that describe turbulent heat transfer 

in the disperse phase, convective heat transfer between the gas and the particles, the radiative heat flux between 

the particles and the environment, and the thermal effect of chemical reactions (1) (for coke particles only). 

Similarly, the heat transfer equation for the gas is written as 

0c:= OcgT~ 1 0 
pg--Ug~+(#gVg+p 'gV'g)Oz Or ---- Or 

( Vg OCg'Tg 
• r~g Pr Or )] - q ,,g r'g + % ~ + ~ Fi= ( ag - ai) - 

i 

- 6  ~, qkiLCS? 1 + 6  ~ (p~iV-~g~j) f l jcSy- '  [ h i - h g + 0 . 5 ( ~ g - ~ j ) 2  ]. 
i j 

(lo) 

Equation (10) includes convective, molecular, and fluctuation transfer of the enthalpy of the gas flow, the work of 

the forces of pressure and interphase interaction, heat transfer between the gas and the particles, and the excess 
enthalpy and deficit of kinetic energy of that part of the matter of the coke particles that is transferred to the gas 

phase in reactions (1). 
Integration of Eq. (4) over the cross section of the reactor, as was done in [1 ], gives 

dG~ R 
dz = 1 2 ~  f • (p~daf l -~g~/l f l ' ]6f lrdr ,  <11) 

0 ] 
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R 
where the mass flow rate of the gas is Gg = 2~ f~g'dgrdr (in [1 ] Gg = const). Thus, if the equation of state of the gas 

0 

is taken into consideration, we obtain a closed system of equations consisting of: (3)-(6); (2) of [1 ]; (7); (4) and (5) 

of [11; (8); (11) of [11; (9)-(11) with unknown "Cm, -~g, flj, fij, fit, ug, ui, vi, kg, k l, Ti, Tg,/gg, p, which can be solved 

by numerical methods. The correlations C'mv'g, n)v), v;T;, and vgTg appearing in Eqs. (3), (6), (9), and (10) are 

calculated by the gradient approach: 

m 

OC m 0-~] . 
C'mv'g = - D r  Or ; • v ) = - D ]  O r '  

v t OTg .... , , = 
�9 vi Ti _ (vi/Pri) O'Ti/O r (12) 

F t 

vg Tg = - Pr--~ Or ' 

(vi and D i a re  the coefficients of turbulent viscosity and diffusion of the "gas" of the i-th particles; v i is found from 

Eq. (22) of [2 ]; in the first approximation Di = vi, Pri = 1). As was done in Eq. (21) in determining the correlations 
u'gu) etc. in Eq. (8), it is necessary to include only the turbulent component of random motion of the particles; the 

results of [5 ] are used here. The other correlations of the fluctuation quantities are calculated in accordance with 

[1, 2]. 

Boundary conditions to Eqs. (4) and (5), (2) of [1 ], (7), (4) and (5) of [1 ], and (8) are prescribed as in 

[3 ]. By virtue of the symmetry of the problem, for the other equations on the axis of the reactor 

On the wall the condition of vanishing of the corresponding flow is used (cf. Eqs. (2) and (3) of [3 ]), then 

Or w= ~, Or ]w= ~ w=O" 

For the temperature of the gas the condition of the first kind Tgw = Tw will be prescribed. As was done in [3 ], in 
the inlet cross section the flow is assumed to be uniform. 

In Figs. 1 - 4  some results on motion, heat transfer, and combustion are presented for a coke-ash mixture 

in a channel with R = 100 ram. In the inlet cross section the averaged velocity of the gas ~g0 = 6 m/sec, the 

temperature of the phases Tg0 = T/0 = 900~ the concentration of oxygen C10 = 0.21, and the diameter of ash 

particles 6 /=  250/~m were assumed. There versions differing in the total concentration of the disperse phase, the 

size of the coke particles, and the wall temperature were considered: case A, x = 1.1, ~i = 200/zm, Tw = 800~ 

case B, r = 6, c~] = 200/~m, Tw = 400~ case C, tc and Tw are the same but the coke particles consist of three 

fractions (c~1 -- 350 Fro, c~2 = 250/~m, and c~ 3 = 1 5 0 / t m )  with equal weight concentrations. In all versions the 
concentration of coke is 0.1r. 

From Fig. 1 (here and in Figs. 2 and 4 solid lines show data for gas, dashed lines represent coke particles, 

and dash-dot lines are data for ash) it can be seen that the temperature of the coke exceeds that of the ash particles 

and the gas; this can be explained by heat release in heterogeneous chemical reactions (1). The temperature of the 

wall has a great effect on the temperature distribution and the burn-up efficiency. While in case A the function 

T](r) is practically constant, case B is characterized by a substantial change in the temperature of the coke particles 

over the cross section of the apparatus, especially at large z. In particular, in the region r / R  % 0.675 (z = 7 m) the 

heat generation exceeds the heat removal (convective and radiative) from the coke particles, which provides for 

efficient burn-up of them, the intensity of which increases toward the flow axis. Meanwhile, near the wall convective 

heat transfer becomes a decisive factor of the thermal state of the particles (due to a substantial increase in the 

temperature drop Tj - Tg), which results in cooling of the particles. From dashed lines 2, 3, and 4 it is possible to 
follow the evolution of the function Tj(r) along the flow. It can be seen that in the axial region the temperature of 
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Fig. 1. Cross-sectional distributions of the temperatures of the phases: 1) case 

A, z=  8.4 m; 2-4)  caseB:2)  z = 2 . 1 m ; 3 )  z = 5 . 4 m ; 4 )  z = T m .  

Fig. 2. Temperature field of the flow for case B: 1-5)  z = 7 m; 1) ~j = 350 

ffm, 2) 250 ~m, 3) 150 ffm; 6) z = 2.05 m. 

S 

2 

I I F I, t 

j . 

I I I I 
8.2 0.4 8..6 D.B r /R a2 a6 ao 

Fig. 3. Distribution of the concentration of the gas components: 1, 2) case A; 

3-5)  case B; 1, 3) oxygen; 2, 4) carbon dioxide gas; 5) carbon monoxide. 
Cm, kmole/m 3. 

Fig. 4. Averaged longitudinal velocity (m/sec) (1) and fluctuation energy 
(m2/sec 2) (2) for case A at z = 8.4 m. 
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the coke particles increases (the heat generation effect) and in the peripheral region it decreases (the heat transfer 

effect). It should be noted that in case A the maximum level of the process is lower than that in case B (in spite 

of a larger value of Tw), which is caused by the difference in the total reacting surface of the coke particles. In the 

flow core (r/R < 0.85 for case A and r/R < 0.9 for case B) the temperature of the ash particles is a little lower 

than the temperature of the gas; in the peripheral zone the difference Tg - T! changes sign and increases sharply 

as the distance from the wall decreases. This behavior of the function Tl(r ) can be explained by intense mixing of 

particles due to the energy of their random motion (see below). This factor has a noticeable effect on the 

tempearture distribution of the coke particles too, especially in the peripheral zone. 

Figure 2 illustrates the thermal state of the flow with the polydisperse particle composition. It is seen that 

at all points of a cross section, the temperature of the particles decreases as their size decreases. This is caused by 
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the effect of convective heat exchange with the gas, which facilitates substantial cooling of the fine particle fractions. 
It should be noted that near the axis of the flow (r/R < 0.32), the temperatures of the large and medium coke 

particles are almost the same. This is caused, on the one hand, by intense burn-up and, on the other, by the effect 
of interparticle collisions on the residence time of particles of different fractions (see [4 ]). 

It can be seen from Fig. 3 that the shape of the distribution of the concentration of the components depends 

strongly on the specifications of the calculation. In case A the functions -Cm(r) are practically constant, which is 

caused by the high temperature of the wall. In case B the situation is different. In the region r /R  < 0.94 the 
concentrations of CO and CO2 decrease monotonically with increase in r due to a decrease in the rate of reactions 

(1) that is related to the temperature of the coke particles (see Fig. 1). Meanwhile, near the wall the values of 
C2 and Ca increase sharply - the increase in the density of the gas appears to be more important here. 

In Fig. 4 the distribution of kinematic characteristics of the flow is shown. In general, the c u r v e s  -Ug(r) and 

"ui(r) are similar to the results for an isothermal flow given in [3 ]: in the core of the flow the higher the free-fall 

velocity of the particles, the more they lag behind the gas; in the near-wall region the particles are ahead of the 

gas since the drag force is negative here and suspension of the particles is mainly determined by their random 

motion. Meanwhile, unlike [3 ], in Fig. 4 the distribution of the gas velocity is somewhat less filled and the points 

of intersection of the c u r v e s  Ug(r) and -ui(r) a r e  shifted toward the axis of the reactor. It should also be noted that 

in the region r/R < 0.8 the energy of random motion of the particles greatly (by more than an order of magnitude 

near the axis) exceeds the fluctuation energy of the gas and this confirms the conclusion made in [3 ] about the 
dominant role of pseudoturbulent transfer in the mechanics of particle motion. It is seen from Fig. 4 that (unlike 

the results of [3 ] and cases B and C, where x -- 6) at a relatively low concentration of disperse material, the random 

motion of the heavier particles is more intense. An analysis of the balance of the terms in the equation of transfer 

of fluctuation energy (11) of [1 ] (see also Eqs. (13), (14), (19)-(21) in [2]) shows that in this case collisions with 

particles of "their own" fraction and the effect of the drag force are the main factors responsible for generation and 

dissipation. It should be noted that the rate of dissipation of the energy of random motion due to interaction with 

the gas (see Eq. (21) in [2 ]) depends strongly on the size and density of the particles, and therefore for coke 

particles the value of k i is slightly lower than that for ash. 

N O T A T I O N  

(2, thermal effect of the reaction; p, density; Cm, cSi, concentration of the m-th component of the gas 
inside and on the surface of a particle of the ./-th fraction; M, molecular weight; z, r, cylindrical coordinates; u, v, 

w, axial, radial, and transverse components of the velocity; 6, particle size; r ,  true volume concentration of the 

particles; am], coefficient of diffusion mass transfer of particles j with the m-th component of the gas; Klj, K2j, Kap 

rates of heterogeneous reactions (1) for particles j; n, number concentration of the particles; k, kinetic energy of 

fluctuation motion; h, enthalpy; /~, v, dynamic and kinematic viscosities; p, pressure; F, force of interphase 

interaction; e, rate of viscous dissipation of turbulent energy; Fp, ep, rates of generation and dissipation of turbulent 

energy due to the effect of the particles; c, specific heat; T, temperature; Pr, Prandtl number; R, reactor radius; 

D, diffusion coefficient; k, mass flow rate concentration. Subscripts: a, flow axis; g, p, gas and particles; i, j, l, 

number of a fraction; m, number of a gas component; t, turbulent analog; w, wall; 0, inlet cross section;, ', averaged 
and fluctuation components. 
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